The modern data analyst must cope with data encoded in various forms, vectors, matrices, strings, graphs, or more. Consequently, statistical and machine learning models tailored to different data encodings are important. We focus on data encoded as normalized vectors, so that their ‘direction’ is more important than their magnitude. Specifically, we consider high-dimensional vectors that lie either on the surface of the unit hypersphere or on the real projective plane. For such data, we briefly review common mathematical models prevalent in machine learning, while also outlining some technical aspects, software, applications, and open mathematical challenges. Directional Statistics in Machine Learning: a Brief Review