Dynamic Deep Neural Networks (D2NN) google
We introduce Dynamic Deep Neural Networks (D2NN), a new type of feed-forward deep neural network that allow selective execution. Given an input, only a subset of D2NN neurons are executed, and the particular subset is determined by the D2NN itself. By pruning unnecessary computation depending on input, D2NNs provide a way to improve computational efficiency. To achieve dynamic selective execution, a D2NN augments a regular feed-forward deep neural network (directed acyclic graph of differentiable modules) with one or more controller modules. Each controller module is a sub-network whose output is a decision that controls whether other modules can execute. A D2NN is trained end to end. Both regular modules and controller modules in a D2NN are learnable and are jointly trained to optimize both accuracy and efficiency. Such training is achieved by integrating backpropagation with reinforcement learning. With extensive experiments of various D2NN architectures on image classification tasks, we demonstrate that D2NNs are general and flexible, and can effectively optimize accuracy-efficiency trade-offs. …

Text Mining google
Text mining, also referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text. High-quality information is typically derived through the devising of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. ‘High quality’ in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities). …

Inertial Regularization and Selection (IRS) google
In this paper, we develop a new sequential regression modeling approach for data streams. Data streams are commonly found around us, e.g in a retail enterprise sales data is continuously collected every day. A demand forecasting model is an important outcome from the data that needs to be continuously updated with the new incoming data. The main challenge in such modeling arises when there is a) high dimensional and sparsity, b) need for an adaptive use of prior knowledge, and/or c) structural changes in the system. The proposed approach addresses these challenges by incorporating an adaptive L1-penalty and inertia terms in the loss function, and thus called Inertial Regularization and Selection (IRS). The former term performs model selection to handle the first challenge while the latter is shown to address the last two challenges. A recursive estimation algorithm is developed, and shown to outperform the commonly used state-space models, such as Kalman Filters, in experimental studies and real data. …

Advertisements