Hidden Markov Model (HMM) google
Hidden Markov Models (HMMs) are powerful, flexible methods for representing and classifying data with trends over time. A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. A HMM can be considered the simplest dynamic Bayesian network. The mathematics behind the HMM was developed by L. E. Baum and coworkers. It is closely related to an earlier work on optimal nonlinear filtering problem (stochastic processes) by Ruslan L. Stratonovich, who was the first to describe the forward-backward procedure.
In simpler Markov models (like a Markov chain), the state is directly visible to the observer, and therefore the state transition probabilities are the only parameters. In a hidden Markov model, the state is not directly visible, but output, dependent on the state, is visible. Each state has a probability distribution over the possible output tokens. Therefore the sequence of tokens generated by an HMM gives some information about the sequence of states. Note that the adjective ‘hidden’ refers to the state sequence through which the model passes, not to the parameters of the model; the model is still referred to as a ‘hidden’ Markov model even if these parameters are known exactly.
Hidden Markov models are especially known for their application in temporal pattern recognition such as speech, handwriting, gesture recognition, part-of-speech tagging, musical score following, partial discharges and bioinformatics.

Spark Python API (PySpark) google
The Spark Python API (PySpark) exposes the Spark programming model to Python. To learn the basics of Spark, we recommend reading through the Scala programming guide first; it should be easy to follow even if you don’t know Scala. This guide will show how to use the Spark features described there in Python.
PySpark & Scikit-learn = Sparkit-learn

Generalized Kalman Smoothing google
State-space smoothing has found many applications in science and engineering. Under linear and Gaussian assumptions, smoothed estimates can be obtained using efficient recursions, for example Rauch-Tung-Striebel and Mayne-Fraser algorithms. Such schemes are equivalent to linear algebraic techniques that minimize a convex quadratic objective function with structure induced by the dynamic model. These classical formulations fall short in many important circumstances. For instance, smoothers obtained using quadratic penalties can fail when outliers are present in the data, and cannot track impulsive inputs and abrupt state changes. Motivated by these shortcomings, generalized Kalman smoothing formulations have been proposed in the last few years, replacing quadratic models with more suitable, often nonsmooth, convex functions. In contrast to classical models, these general estimators require use of iterated algorithms, and these have received increased attention from control, signal processing, machine learning, and optimization communities. In this survey we show that the optimization viewpoint provides the control and signal processing community great freedom in the development of novel modeling and inference frameworks for dynamical systems. We discuss general statistical models for dynamic systems, making full use of nonsmooth convex penalties and constraints, and providing links to important models in signal processing and machine learning. We also survey optimization techniques for these formulations, paying close attention to dynamic problem structure. Modeling concepts and algorithms are illustrated with numerical examples. …