Temporal Overdrive Recurrent Neural Network google
In this work we present a novel recurrent neural network architecture designed to model systems characterized by multiple characteristic timescales in their dynamics. The proposed network is composed by several recurrent groups of neurons that are trained to separately adapt to each timescale, in order to improve the system identification process. We test our framework on time series prediction tasks and we show some promising, preliminary results achieved on synthetic data. To evaluate the capabilities of our network, we compare the performance with several state-of-the-art recurrent architectures. …

Extreme Value Learning (EVL) google
The novel unseen classes can be formulated as the extreme values of known classes. This inspired the recent works on open-set recognition \cite{Scheirer_2013_TPAMI,Scheirer_2014_TPAMIb,EVM}, which however can have no way of naming the novel unseen classes. To solve this problem, we propose the Extreme Value Learning (EVL) formulation to learn the mapping from visual feature to semantic space. To model the margin and coverage distributions of each class, the Vocabulary-informed Learning (ViL) is adopted by using vast open vocabulary in the semantic space. Essentially, by incorporating the EVL and ViL, we for the first time propose a novel semantic embedding paradigm — Vocabulary-informed Extreme Value Learning (ViEVL), which embeds the visual features into semantic space in a probabilistic way. The learned embedding can be directly used to solve supervised learning, zero-shot and open set recognition simultaneously. Experiments on two benchmark datasets demonstrate the effectiveness of proposed frameworks. …

Skip-Gram Model google
A technique where by n-grams are still stored to model language, but they allow for tokens to be skipped. …

Advertisements