**TensorLy**

Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning. Written in Python, it aims at following the same standards adopted by the main projects of the Python scientific community and fully integrating with these. It allows for fast and straightforward tensor decomposition and learning and comes with exhaustive tests, thorough documentation and minimal dependencies. It can be easily extended and its BSD licence makes it suitable for both academic and commercial applications. TensorLy is available at https://…/tensorly. … **Functional Additive Regression (FAR)**

We suggest a new method, called Functional Additive Regression, or FAR, for efficiently performing high-dimensional functional regression. FAR extends the usual linear regression model involving a functional predictor, $X(t)$, and a scalar response, $Y$, in two key respects. First, FAR uses a penalized least squares optimization approach to efficiently deal with high-dimensional problems involving a large number of functional predictors. Second, FAR extends beyond the standard linear regression setting to fit general nonlinear additive models. We demonstrate that FAR can be implemented with a wide range of penalty functions using a highly efficient coordinate descent algorithm. Theoretical results are developed which provide motivation for the FAR optimization criterion. Finally, we show through simulations and two real data sets that FAR can significantly outperform competing methods. … **Multiobjective Programming**

Multi-objective optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making, that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective optimization has been applied in many fields of science, including engineering, economics and logistics (see the section on applications for detailed examples) where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. Minimizing cost while maximizing comfort while buying a car, and maximizing performance whilst minimizing fuel consumption and emission of pollutants of a vehicle are examples of multi-objective optimization problems involving two and three objectives, respectively. In practical problems, there can be more than three objectives. For a nontrivial multi-objective optimization problem, there does not exist a single solution that simultaneously optimizes each objective. In that case, the objective functions are said to be conflicting, and there exists a (possibly infinite) number of Pareto optimal solutions. A solution is called nondominated, Pareto optimal, Pareto efficient or noninferior, if none of the objective functions can be improved in value without degrading some of the other objective values. Without additional subjective preference information, all Pareto optimal solutions are considered equally good (as vectors cannot be ordered completely). Researchers study multi-objective optimization problems from different viewpoints and, thus, there exist different solution philosophies and goals when setting and solving them. The goal may be to find a representative set of Pareto optimal solutions, and/or quantify the trade-offs in satisfying the different objectives, and/or finding a single solution that satisfies the subjective preferences of a human decision maker (DM). …

# If you did not already know

**02**
*Wednesday*
Aug 2017

Posted What is ...

in
Advertisements