Parallel Data Assimilation Framework (PDAF) google
The Parallel Data Assimilation Framework – PDAF – is a software environment for ensemble data assimilation. PDAF simplifies the implementation of the data assimilation system with existing numerical models. With this, users can obtain a data assimilation system with less work and can focus on applying data assimilation. PDAF provides fully implemented and optimized data assimilation algorithms, in particular ensemble-based Kalman filters like LETKF and LSEIK. It allows users to easily test different assimilation algorithms and observations. PDAF is optimized for the application with large-scale models that usually run on big parallel computers and is applicable for operational applications. However, it is also well suited for smaller models and even toy models. PDAF provides a standardized interface that separates the numerical model from the assimilation routines. This allows to perform the further development of the assimilation methods and the model independently. New algorithmic developments can be readily made available through the interface such that they can be immediately applied with existing implementations. The test suite of PDAF provides small models for easy testing of algorithmic developments and for teaching data assimilation. PDAF is an open-source project. Its functionality will be further extended by input from research projects. In addition, users are welcome to contribute to the further enhancement of PDAF, e.g. by contributing additional assimilation methods or interface routines for different numerical models. …

Data Structure Graph google
A Data Structure Graph is a group of atomic entities that are related to each other, stored in a repository, then moved from one persistence layer to another, rendered as a Graph. …

Statistical Distance google
In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points. A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence, and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values. Statistical distance measures are mostly not metrics and they need not be symmetric. Some types of distance measures are referred to as (statistical) divergences. …

Advertisements