Precision and Recall google
In pattern recognition and information retrieval with binary classification, precision (also called positive predictive value) is the fraction of retrieved instances that are relevant, while recall (also known as sensitivity) is the fraction of relevant instances that are retrieved. Both precision and recall are therefore based on an understanding and measure of relevance. Suppose a program for recognizing dogs in scenes from a video identifies 7 dogs in a scene containing 9 dogs and some cats. If 4 of the identifications are correct, but 3 are actually cats, the program’s precision is 4/7 while its recall is 4/9. When a search engine returns 30 pages only 20 of which were relevant while failing to return 40 additional relevant pages, its precision is 20/30 = 2/3 while its recall is 20/60 = 1/3. In statistics, if the null hypothesis is that all and only the relevant items are retrieved, absence of type I and type II errors corresponds respectively to maximum precision (no false positive) and maximum recall (no false negative). The above pattern recognition example contained 7 – 4 = 3 type I errors and 9 – 4 = 5 type II errors. Precision can be seen as a measure of exactness or quality, whereas recall is a measure of completeness or quantity. In simple terms, high precision means that an algorithm returned substantially more relevant results than irrelevant, while high recall means that an algorithm returned most of the relevant results.

Multiple Response Permutation Procedure (MRPP) google
Multiple Response Permutation Procedure (MRPP) provides a test of whether there is a significant difference between two or more groups of sampling units. …

Neural Programmer google
Deep neural networks have achieved impressive supervised classification performance in many tasks including image recognition, speech recognition, and sequence to sequence learning. However, this success has not been translated to applications like question answering that may involve complex arithmetic and logic reasoning. A major limitation of these models is in their inability to learn even simple arithmetic and logic operations. For example, it has been shown that neural networks fail to learn to add two binary numbers reliably. In this work, we propose Neural Programmer, an end-to-end differentiable neural network augmented with a small set of basic arithmetic and logic operations. Neural Programmer can call these augmented operations over several steps, thereby inducing compositional programs that are more complex than the built-in operations. The model learns from a weak supervision signal which is the result of execution of the correct program, hence it does not require expensive annotation of the correct program itself. The decisions of what operations to call, and what data segments to apply to are inferred by Neural Programmer. Such decisions, during training, are done in a differentiable fashion so that the entire network can be trained jointly by gradient descent. We find that training the model is difficult, but it can be greatly improved by adding random noise to the gradient. On a fairly complex synthetic table-comprehension dataset, traditional recurrent networks and attentional models perform poorly while Neural Programmer typically obtains nearly perfect accuracy. …