DOuble Sparsity Kernel (DOSK) google
Learning with Reproducing Kernel Hilbert Spaces (RKHS) has been widely used in many scientific disciplines. Because a RKHS can be very flexible, it is common to impose a regularization term in the optimization to prevent overfitting. Standard RKHS learning employs the squared norm penalty of the learning function. Despite its success, many challenges remain. In particular, one cannot directly use the squared norm penalty for variable selection or data extraction. Therefore, when there exists noise predictors, or the underlying function has a sparse representation in the dual space, the performance of standard RKHS learning can be suboptimal. In the literature,work has been proposed on how to perform variable selection in RKHS learning, and a data sparsity constraint was considered for data extraction. However, how to learn in a RKHS with both variable selection and data extraction simultaneously remains unclear. In this paper, we propose a unified RKHS learning method, namely, DOuble Sparsity Kernel (DOSK) learning, to overcome this challenge. An efficient algorithm is provided to solve the corresponding optimization problem. We prove that under certain conditions, our new method can asymptotically achieve variable selection consistency. Simulated and real data results demonstrate that DOSK is highly competitive among existing approaches for RKHS learning. …

Count-Min Sketch google
In computing, the count-min sketch (CM sketch) is a probabilistic data structure that serves as a frequency table of events in a stream of data. It uses hash functions to map events to frequencies, but unlike a hash table uses only sub-linear space, at the expense of overcounting some events due to collisions. The count-min sketch was invented in 2003 by Graham Count-min sketches are somewhat similar to Bloom filters; the main distinction is that Bloom filters represent sets, while CM sketches represent multisets. Spectral Bloom filters with multi-set policy are conceptually isomorphic to the count-min sketch. …

Point Linking Network (PLN) google
Object detection is a core problem in computer vision. With the development of deep ConvNets, the performance of object detectors has been dramatically improved. The deep ConvNets based object detectors mainly focus on regressing the coordinates of bounding box, \eg, Faster-R-CNN, YOLO and SSD. Different from these methods that considering bounding box as a whole, we propose a novel object bounding box representation using points and links and implemented using deep ConvNets, termed as Point Linking Network (PLN). Specifically, we regress the corner/center points of bounding-box and their links using a fully convolutional network; then we map the corner points and their links back to multiple bounding boxes; finally an object detection result is obtained by fusing the multiple bounding boxes. PLN is naturally robust to object occlusion and flexible to object scale variation and aspect ratio variation. In the experiments, PLN with the Inception-v2 model achieves state-of-the-art single-model and single-scale results on the PASCAL VOC 2007, the PASCAL VOC 2012 and the COCO detection benchmarks without bells and whistles. The source code will be released. …

Advertisements