Generalized Graded Unfolding Model (GGUM) google
The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.
http://…/gbm2.pdf


Referenced Metric and Unreferenced Metric Blended Evaluation Routine (RUBER) google
Open-domain human-computer conversation has been attracting increasing attention over the past few years. However, there does not exist a standard automatic evaluation metric for open-domain dialog systems; researchers usually resort to human annotation for model evaluation, which is time- and labor-intensive. In this paper, we propose RUBER, a Referenced metric and Unreferenced metric Blended Evaluation Routine, which evaluates a reply by taking into consideration both a groundtruth reply and a query (previous user utterance). Our metric is learnable, but its training does not require labels of human satisfaction. Hence, RUBER is flexible and extensible to different datasets and languages. Experiments on both retrieval and generative dialog systems show that RUBER has high correlation with human annotation. …

Classification Based Preselection (CPS) google
In evolutionary algorithms, a preselection operator aims to select the promising offspring solutions from a candidate offspring set. It is usually based on the estimated or real objective values of the candidate offspring solutions. In a sense, the preselection can be treated as a classification procedure, which classifies the candidate offspring solutions into promising ones and unpromising ones. Following this idea, we propose a classification based preselection (CPS) strategy for evolutionary multiobjective optimization. When applying classification based preselection, an evolutionary algorithm maintains two external populations (training data set) that consist of some selected good and bad solutions found so far; then it trains a classifier based on the training data set in each generation. Finally it uses the classifier to filter the unpromising candidate offspring solutions and choose a promising one from the generated candidate offspring set for each parent solution. In such cases, it is not necessary to estimate or evaluate the objective values of the candidate offspring solutions. The classification based preselection is applied to three state-of-the-art multiobjective evolutionary algorithms (MOEAs) and is empirically studied on two sets of test instances. The experimental results suggest that classification based preselection can successfully improve the performance of these MOEAs. …

Advertisements