Regression or classification? This is perhaps the most basic question faced when tackling a new supervised learning problem. We present an Evolutionary Deep Learning (EDL) algorithm that automatically solves this by identifying the question type with high accuracy, along with a proposed deep architecture. Typically, a significant amount of human insight and preparation is required prior to executing machine learning algorithms. For example, when creating deep neural networks, the number of parameters must be selected in advance and furthermore, a lot of these choices are made based upon pre-existing knowledge of the data such as the use of a categorical cross entropy loss function. Humans are able to study a dataset and decide whether it represents a classification or a regression problem, and consequently make decisions which will be applied to the execution of the neural network. We propose the Automated Problem Identification (API) algorithm, which uses an evolutionary algorithm interface to TensorFlow to manipulate a deep neural network to decide if a dataset represents a classification or a regression problem. We test API on 16 different classification, regression and sentiment analysis datasets with up to 10,000 features and up to 17,000 unique target values. API achieves an average accuracy of $96.3\%$ in identifying the problem type without hardcoding any insights about the general characteristics of regression or classification problems. For example, API successfully identifies classification problems even with 1000 target values. Furthermore, the algorithm recommends which loss function to use and also recommends a neural network architecture. Our work is therefore a step towards fully automated machine learning. Automated Problem Identification: Regression vs Classification via Evolutionary Deep Networks