Bayesian Nonparametric Model google
A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametric model uses only a finite subset of the available parameter dimensions to explain a finite sample of observations, with the set of dimensions chosen depending on the sample, such that the effective complexity of the model (as measured by the number of dimensions used) adapts to the data. Classical adaptive problems, such as nonparametric estimation and model selection, can thus be formulated as Bayesian inference problems. Popular examples of Bayesian nonparametric models include Gaussian process regression, in which the correlation structure is refined with growing sample size, and Dirichlet process mixture models for clustering, which adapt the number of clusters to the complexity of the data. Bayesian nonparametric models have recently been applied to a variety of machine learning problems, including regression, classification, clustering, latent variable modeling, sequential modeling, image segmentation, source separation and grammar induction. …

SPECTRE google
Distributed Complex Event Processing (DCEP) is a paradigm to infer the occurrence of complex situations in the surrounding world from basic events like sensor readings. In doing so, DCEP operators detect event patterns on their incoming event streams. To yield high operator throughput, data parallelization frameworks divide the incoming event streams of an operator into overlapping windows that are processed in parallel by a number of operator instances. In doing so, the basic assumption is that the different windows can be processed independently from each other. However, consumption policies enforce that events can only be part of one pattern instance; then, they are consumed, i.e., removed from further pattern detection. That implies that the constituent events of a pattern instance detected in one window are excluded from all other windows as well, which breaks the data parallelism between different windows. In this paper, we tackle this problem by means of speculation: Based on the likelihood of an event’s consumption in a window, subsequent windows may speculatively suppress that event. We propose the SPECTRE framework for speculative processing of multiple dependent windows in parallel. Our evaluations show an up to linear scalability of SPECTRE with the number of CPU cores. …

Delta Epsilon Alpha Star google
Delta Epsilon Alpha Star is a minimal coverage, real-time robotic search algorithm that yields a moderately aggressive search path with minimal backtracking. Search performance is bounded by a placing a combinatorial bound, epsilon and delta, on the maximum deviation from the theoretical shortest path and the probability at which further deviations can occur. Additionally, we formally define the notion of PAC-admissibility — a relaxed admissibility criteria for algorithms, and show that PAC-admissible algorithms are better suited to robotic search situations than epsilon-admissible or strict algorithms. …

Advertisements