Burning Number google
We introduce a new graph parameter called the burning number, inspired by contact processes on graphs such as graph bootstrap percolation, and graph searching paradigms such as Firefighter. The burning number measures the speed of the spread of contagion in a graph; the lower the burning number, the faster the contagion spreads. We provide a number of properties of the burning number, including characterizations and bounds. The burning number is computed for several graph classes, and is derived for the graphs generated by the Iterated Local Transitivity model for social networks. …

Agnostic Disambiguation of Named Entities Using Linked Open Data (AGDISTIS) google
AGDISTIS is an Open Source Named Entity Disambiguation Framework able to link entities against every Linked Data Knowledge Base. The ongoing transition from the current Web of unstructured data to the Data Web yet requires scalable and accurate approaches for the extraction of structured data in RDF (Resource Description Framework). One of the key steps towards extracting RDF from natural-language corpora is the disambiguation of named entities. AGDISTIS combines the HITS algorithm with label expansion strategies and string similarity measures. Based on this combination, it can efficiently detect the correct URIs for a given set of named entities within an input text. Furthermore, AGDISTIS is agnostic of the underlying knowledge base. AGDISTIS has been evaluated on different datasets against state-of-the-art named entity disambiguation frameworks.

Linear Superiorization (LinSup) google
Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same feasiblity-seeking iterative process without superiorization. Using a feasibility-seeking iterative process that converges even if the linear feasible set is empty, LinSup generates an iterative sequence that converges to a point that minimizes a proximity function which measures the linear constraints violation. In addition, due to LinSup’s repeated objective function reduction steps such a point will most probably have a reduced objective function value. We present an exploratory experimental result that illustrates the behavior of LinSup on an infeasible LP problem. …