Likelihood Ratio Similarity (LiRa) google
Recommender system data presents unique challenges to the data mining, machine learning, and algorithms communities. The high missing data rate, in combination with the large scale and high dimensionality that is typical of recommender systems data, requires new tools and methods for efficient data analysis. Here, we address the challenge of evaluating similarity between two users in a recommender system, where for each user only a small set of ratings is available. We present a new similarity score, that we call LiRa, based on a statistical model of user similarity, for large-scale, discrete valued data with many missing values. We show that this score, based on a ratio of likelihoods, is more effective at identifying similar users than traditional similarity scores in user-based collaborative filtering, such as the Pearson correlation coefficient. We argue that our approach has significant potential to improve both accuracy and scalability in collaborative filtering. …

HyperLogLog google
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset (the cardinality). Calculating the exact cardinality of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators, such as the HyperLogLog algorithm, use significantly less memory than this, at the cost of obtaining only an approximation of the cardinality. The HyperLogLog algorithm is able to estimate cardinalities of with a typical accuracy of 2%, using 1.5kB of memory. HyperLogLog is an extension of the earlier LogLog algorithm. …

Value-Gradient Backpropagation (GProp) google
This paper proposes GProp, a deep reinforcement learning algorithm for continuous policies with compatible function approximation. The algorithm is based on two innovations. Firstly, we present a temporal-difference based method for learning the gradient of the value-function. Secondly, we present the deviator-actor-critic (DAC) model, which comprises three neural networks that estimate the value function, its gradient, and determine the actor’s policy respectively. We evaluate GProp on two challenging tasks: a contextual bandit problem constructed from nonparametric regression datasets that is designed to probe the ability of reinforcement learning algorithms to accurately estimate gradients; and the octopus arm, a challenging reinforcement learning benchmark. GProp is competitive with fully supervised methods on the bandit task and achieves the best performance to date on the octopus arm. …

Advertisements