Generative Mixture of Networks google
A generative model based on training deep architectures is proposed. The model consists of K networks that are trained together to learn the underlying distribution of a given data set. The process starts with dividing the input data into K clusters and feeding each of them into a separate network. After few iterations of training networks separately, we use an EM-like algorithm to train the networks together and update the clusters of the data. We call this model Mixture of Networks. The provided model is a platform that can be used for any deep structure and be trained by any conventional objective function for distribution modeling. As the components of the model are neural networks, it has high capability in characterizing complicated data distributions as well as clustering data. We apply the algorithm on MNIST hand-written digits and Yale face datasets. We also demonstrate the clustering ability of the model using some real-world and toy examples. …

Lavaan Project google
The lavaan package is developed to provide useRs, researchers and teachers a free open-source, but commercial-quality package for latent variable modeling. You can use lavaan to estimate a large variety of multivariate statistical models, including path analysis, confirmatory factor analysis, structural equation modeling and growth curve models. The official reference to the lavaan package is the following paper: Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://…/i02

Incremental Sequence Learning google
Deep learning research over the past years has shown that by increasing the scope or difficulty of the learning problem over time, increasingly complex learning problems can be addressed. We study incremental learning in the context of sequence learning, using generative RNNs in the form of multi-layer recurrent Mixture Density Networks. We introduce Incremental Sequence Learning, a simple incremental approach to sequence learning. Incremental Sequence Learning starts out by using only the first few steps of each sequence as training data. Each time a performance criterion has been reached, the length of the parts of the sequences used for training is increased. To evaluate Incremental Sequence Learning and comparison methods, we introduce and make available a novel sequence learning task and data set: predicting and classifying MNIST pen stroke sequences, where the familiar handwritten digit images have been transformed to pen stroke sequences representing the skeletons of the digits. We find that Incremental Sequence Learning greatly speeds up sequence learning and reaches the best test performance level of regular sequence learning 20 times faster, reduces the test error by 74%, and in general performs more robustly; it displays lower variance and achieves sustained progress after all three comparison method have stopped improving. A trained sequence prediction model is also used in transfer learning to the task of sequence classification, where it is found that transfer learning realizes improved classification performance compared to methods that learn to classify from scratch. …

Advertisements