Randomized Canonical Correlation google
Independent component analysis (ICA) is a method for recovering statistically independent signals from observations of unknown linear combinations of the sources. Some of the most accurate ICA decomposition methods require searching for the inverse transformation which minimizes different approximations of the Mutual Information, a measure of statistical independence of random vectors. Two such approximations are the Kernel Generalized Variance or the Kernel Canonical Correlation which has been shown to reach the highest performance of ICA methods. However, the computational effort necessary just for computing these measures is cubic in the sample size. Hence, optimizing them becomes even more computationally demanding, in terms of both space and time. Here, we propose a couple of alternative novel measures based on randomized features of the samples – the Randomized Generalized Variance and the Randomized Canonical Correlation. The computational complexity of calculating the proposed alternatives is linear in the sample size and provide a controllable approximation of their Kernel-based non-random versions. We also show that optimization of the proposed statistical properties yields a comparable separation error at an order of magnitude faster compared to Kernel-based measures. …

One-Shot Imitation Learning google
Imitation learning has been commonly applied to solve different tasks in isolation. This usually requires either careful feature engineering, or a significant number of samples. This is far from what we desire: ideally, robots should be able to learn from very few demonstrations of any given task, and instantly generalize to new situations of the same task, without requiring task-specific engineering. In this paper, we propose a meta-learning framework for achieving such capability, which we call one-shot imitation learning. Specifically, we consider the setting where there is a very large set of tasks, and each task has many instantiations. For example, a task could be to stack all blocks on a table into a single tower, another task could be to place all blocks on a table into two-block towers, etc. In each case, different instances of the task would consist of different sets of blocks with different initial states. At training time, our algorithm is presented with pairs of demonstrations for a subset of all tasks. A neural net is trained that takes as input one demonstration and the current state (which initially is the initial state of the other demonstration of the pair), and outputs an action with the goal that the resulting sequence of states and actions matches as closely as possible with the second demonstration. At test time, a demonstration of a single instance of a new task is presented, and the neural net is expected to perform well on new instances of this new task. The use of soft attention allows the model to generalize to conditions and tasks unseen in the training data. We anticipate that by training this model on a much greater variety of tasks and settings, we will obtain a general system that can turn any demonstrations into robust policies that can accomplish an overwhelming variety of tasks. Videos available at https://bit.ly/one-shot-imitation.

Prediction Difference Analysis google
This article presents the prediction difference analysis method for visualizing the response of a deep neural network to a specific input. When classifying images, the method highlights areas in a given input image that provide evidence for or against a certain class. It overcomes several shortcoming of previous methods and provides great additional insight into the decision making process of classifiers. Making neural network decisions interpretable through visualization is important both to improve models and to accelerate the adoption of black-box classifiers in application areas such as medicine. We illustrate the method in experiments on natural images (ImageNet data), as well as medical images (MRI brain scans). …