Follow the Leader (FTL) google
A natural algorithm to use in the OCO framework is Follow the Leader, which tries to minimize the regret over all of the previous time steps.
https://…/notes.pdf


Propensity Score Matching (PSM) google
In the statistical analysis of observational data, propensity score matching (PSM) is a statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment. PSM attempts to reduce the bias due to confounding variables that could be found in an estimate of the treatment effect obtained from simply comparing outcomes among units that received the treatment versus those that did not. The technique was first published by Paul Rosenbaum and Donald Rubin in 1983, and implements the Rubin causal model for observational studies.
The possibility of bias arises because the apparent difference in outcome between these two groups of units may depend on characteristics that affected whether or not a unit received a given treatment instead of due to the effect of the treatment per se. In randomized experiments, the randomization enables unbiased estimation of treatment effects; for each covariate, randomization implies that treatment-groups will be balanced on average, by the law of large numbers. Unfortunately, for observational studies, the assignment of treatments to research subjects is typically not random. Matching attempts to mimic randomization by creating a sample of units that received the treatment that is comparable on all observed covariates to a sample of units that did not receive the treatment.
For example, one may be interested to know the consequences of smoking or the consequences of going to university. The people ‘treated’ are simply those – the smokers, or the university graduates – who in the course of everyday life undergo whatever it is that is being studied by the researcher. In both of these cases it is unfeasible (and perhaps unethical) to randomly assign people to smoking or a university education, so observational studies are required. The treatment effect estimated by simply comparing a particular outcome – rate of cancer or life time earnings – between those who smoked and did not smoke or attended university and did not attend university would be biased by any factors that predict smoking or university attendance, respectively. PSM attempts to control for these differences to make the groups receiving treatment and not-treatment more comparable. …


Probabilistic Generative Adversarial Network (PGAN) google
We introduce the Probabilistic Generative Adversarial Network (PGAN), a new GAN variant based on a new kind of objective function. The central idea is to integrate a probabilistic model (a Gaussian Mixture Model, in our case) into the GAN framework which supports a new kind of loss function (based on likelihood rather than classification loss), and at the same time gives a meaningful measure of the quality of the outputs generated by the network. Experiments with MNIST show that the model learns to generate realistic images, and at the same time computes likelihoods that are correlated with the quality of the generated images. We show that PGAN is better able to cope with instability problems that are usually observed in the GAN training procedure. We investigate this from three aspects: the probability landscape of the discriminator, gradients of the generator, and the perfect discriminator problem. …

Advertisements