Computer vision is one of the most active research fields in information technology today. Giving machines and robots the ability to see and comprehend the surrounding world at the speed of sight creates endless potential applications and opportunities. Feature detection and description algorithms can be indeed considered as the retina of the eyes of such machines and robots. However, these algorithms are typically computationally intensive, which prevents them from achieving the speed of sight real-time performance. In addition, they differ in their capabilities and some may favor and work better given a specific type of input compared to others. As such, it is essential to compactly report their pros and cons as well as their performances and recent advances. This paper is dedicated to provide a comprehensive overview on the state-of-the-art and recent advances in feature detection and description algorithms. Specifically, it starts by overviewing fundamental concepts. It then compares, reports and discusses their performance and capabilities. The Maximally Stable Extremal Regions algorithm and the Scale Invariant Feature Transform algorithms, being two of the best of their type, are selected to report their recent algorithmic derivatives. Recent Advances in Features Extraction and Description Algorithms: A Comprehensive Survey

Advertisements