Deep Symbolic Network (DSN) google
We introduce the Deep Symbolic Network (DSN) model, which aims at becoming the white-box version of Deep Neural Networks (DNN). The DSN model provides a simple, universal yet powerful structure, similar to DNN, to represent any knowledge of the world, which is transparent to humans. The conjecture behind the DSN model is that any type of real world objects sharing enough common features are mapped into human brains as a symbol. Those symbols are connected by links, representing the composition, correlation, causality, or other relationships between them, forming a deep, hierarchical symbolic network structure. Powered by such a structure, the DSN model is expected to learn like humans, because of its unique characteristics. First, it is universal, using the same structure to store any knowledge. Second, it can learn symbols from the world and construct the deep symbolic networks automatically, by utilizing the fact that real world objects have been naturally separated by singularities. Third, it is symbolic, with the capacity of performing causal deduction and generalization. Fourth, the symbols and the links between them are transparent to us, and thus we will know what it has learned or not – which is the key for the security of an AI system. Fifth, its transparency enables it to learn with relatively small data. Sixth, its knowledge can be accumulated. Last but not least, it is more friendly to unsupervised learning than DNN. We present the details of the model, the algorithm powering its automatic learning ability, and describe its usefulness in different use cases. The purpose of this paper is to generate broad interest to develop it within an open source project centered on the Deep Symbolic Network (DSN) model towards the development of general AI. …

Deep Optimistic Linear Support Learning (DOL) google
We propose Deep Optimistic Linear Support Learning (DOL) to solve high-dimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the first time that deep reinforcement learning has succeeded in learning multi-objective policies. In addition, we provide a testbed with two experiments to be used as a benchmark for deep multi-objective reinforcement learning. …

GraphGAN google
The goal of graph representation learning is to embed each vertex in a graph into a low-dimensional vector space. Existing graph representation learning methods can be classified into two categories: generative models that learn the underlying connectivity distribution in the graph, and discriminative models that predict the probability of edge existence between a pair of vertices. In this paper, we propose GraphGAN, an innovative graph representation learning framework unifying above two classes of methods, in which the generative model and discriminative model play a game-theoretical minimax game. Specifically, for a given vertex, the generative model tries to fit its underlying true connectivity distribution over all other vertices and produces ‘fake’ samples to fool the discriminative model, while the discriminative model tries to detect whether the sampled vertex is from ground truth or generated by the generative model. With the competition between these two models, both of them can alternately and iteratively boost their performance. Moreover, when considering the implementation of generative model, we propose a novel graph softmax to overcome the limitations of traditional softmax function, which can be proven satisfying desirable properties of normalization, graph structure awareness, and computational efficiency. Through extensive experiments on real-world datasets, we demonstrate that GraphGAN achieves substantial gains in a variety of applications, including link prediction, node classification, and recommendation, over state-of-the-art baselines. …

Advertisements