R google
R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity. One of R’s strengths is the ease with which well-designed publication-quality plots can be produced, including mathematical symbols and formulae where needed. Great care has been taken over the defaults for the minor design choices in graphics, but the user retains full control. …

Tree-Structured Boosting google
Additive models, such as produced by gradient boosting, and full interaction models, such as classification and regression trees (CART), are widely used algorithms that have been investigated largely in isolation. We show that these models exist along a spectrum, revealing never-before-known connections between these two approaches. This paper introduces a novel technique called tree-structured boosting for creating a single decision tree, and shows that this method can produce models equivalent to CART or gradient boosted stumps at the extremes by varying a single parameter. Although tree-structured boosting is designed primarily to provide both the model interpretability and predictive performance needed for high-stake applications like medicine, it also can produce decision trees represented by hybrid models between CART and boosted stumps that can outperform either of these approaches. …

Mandolin google
Markov Logic Networks join probabilistic modeling with first-order logic and have been shown to integrate well with the Semantic Web foundations. While several approaches have been devised to tackle the subproblems of rule mining, grounding, and inference, no comprehensive workflow has been proposed so far. In this paper, we fill this gap by introducing a framework called Mandolin, which implements a workflow for knowledge discovery specifically on RDF datasets. Our framework imports knowledge from referenced graphs, creates similarity relationships among similar literals, and relies on state-of-the-art techniques for rule mining, grounding, and inference computation. We show that our best configuration scales well and achieves at least comparable results with respect to other statistical-relational-learning algorithms on link prediction. …

Advertisements