Neuro-Fuzzy google
In the field of artificial intelligence, neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic. Neuro-fuzzy was proposed by J. S. R. Jang. Neuro-fuzzy hybridization results in a hybrid intelligent system that synergizes these two techniques by combining the human-like reasoning style of fuzzy systems with the learning and connectionist structure of neural networks. Neuro-fuzzy hybridization is widely termed as Fuzzy Neural Network (FNN) or Neuro-Fuzzy System (NFS) in the literature. Neuro-fuzzy system (the more popular term is used henceforth) incorporates the human-like reasoning style of fuzzy systems through the use of fuzzy sets and a linguistic model consisting of a set of IF-THEN fuzzy rules. The main strength of neuro-fuzzy systems is that they are universal approximators with the ability to solicit interpretable IF-THEN rules. The strength of neuro-fuzzy systems involves two contradictory requirements in fuzzy modeling: interpretability versus accuracy. In practice, one of the two properties prevails. The neuro-fuzzy in fuzzy modeling research field is divided into two areas: linguistic fuzzy modeling that is focused on interpretability, mainly the Mamdani model; and precise fuzzy modeling that is focused on accuracy, mainly the Takagi-Sugeno-Kang (TSK) model. Although generally assumed to be the realization of a fuzzy system through connectionist networks, this term is also used to describe some other configurations including:
• Deriving fuzzy rules from trained RBF networks.
• Fuzzy logic based tuning of neural network training parameters.
• Fuzzy logic criteria for increasing a network size.
• Realising fuzzy membership function through clustering algorithms in unsupervised learning in SOMs and neural networks.
• Representing fuzzification, fuzzy inference and defuzzification through multi-layers feed-forward connectionist networks.
It must be pointed out that interpretability of the Mamdani-type neuro-fuzzy systems can be lost. To improve the interpretability of neuro-fuzzy systems, certain measures must be taken, wherein important aspects of interpretability of neuro-fuzzy systems are also discussed. A recent research line addresses the data stream mining case, where neuro-fuzzy systems are sequentially updated with new incoming samples on demand and on-the-fly. Thereby, system updates do not only include a recursive adaptation of model parameters, but also a dynamic evolution and pruning of model components (neurons, rules), in order to handle concept drift and dynamically changing system behavior adequately and to keep the systems/models ‘up-to-date’ anytime. Comprehensive surveys of various evolving neuro-fuzzy systems approaches can be found in and. …


Hierarchical Stochastic Clustering (HSC) google
Hierarchical clustering is one of the most powerful solutions to the problem of clustering, on the grounds that it performs a multi scale organization of the data. In recent years, research on hierarchical clustering methods has attracted considerable interest due to the demanding modern application domains. We present a novel divisive hierarchical clustering framework called Hierarchical Stochastic Clustering (HSC), that acts in two stages. In the first stage, it finds a primary hierarchy of clustering partitions in a dataset. In the second stage, feeds a clustering algorithm with each one of the clusters of the very detailed partition, in order to settle the final result. The output is a hierarchy of clusters. Our method is based on the previous research of Meyer and Weissel Stochastic Data Clustering and the theory of Simon and Ando on Variable Aggregation. Our experiments show that our framework builds a meaningful hierarchy of clusters and benefits consistently the clustering algorithm that acts in the second stage, not only computationally but also in terms of cluster quality. This result suggest that HSC framework is ideal for obtaining hierarchical solutions of large volumes of data. …

Sum-Product-Quotient Network google
We present a novel tractable generative model that extends Sum-Product Networks (SPNs) and significantly boost their power. We call it Sum-Product-Quotient Networks (SPQNs), whose core concept is to incorporate conditional distributions into the model by direct computation using quotient nodes, e.g. $P(A|B){=}\frac{P(A,B)}{P(B)}$. We provide sufficient conditions for the tractability of SPQNs that generalize and relax the decomposable and complete tractability conditions of SPNs. These relaxed conditions give rise to an exponential boost to the expressive efficiency of our model, i.e. we prove that there are distributions which SPQNs can compute efficiently but require SPNs to be of exponential size. Thus, we narrow the gap in expressivity between tractable graphical models and other Neural Network-based generative models. …

Advertisements