**Natural Parameter Networks (NPN)**

Neural networks (NN) have achieved state-of-the-art performance in various applications. Unfortunately in applications where training data is insufficient, they are often prone to overfitting. One effective way to alleviate this problem is to exploit the Bayesian approach by using Bayesian neural networks (BNN). Another shortcoming of NN is the lack of flexibility to customize different distributions for the weights and neurons according to the data, as is often done in probabilistic graphical models. To address these problems, we propose a class of probabilistic neural networks, dubbed natural-parameter networks (NPN), as a novel and lightweight Bayesian treatment of NN. NPN allows the usage of arbitrary exponential-family distributions to model the weights and neurons. Different from traditional NN and BNN, NPN takes distributions as input and goes through layers of transformation before producing distributions to match the target output distributions. As a Bayesian treatment, efficient backpropagation (BP) is performed to learn the natural parameters for the distributions over both the weights and neurons. The output distributions of each layer, as byproducts, may be used as second-order representations for the associated tasks such as link prediction. Experiments on real-world datasets show that NPN can achieve state-of-the-art performance. … **Artificial Continuous Prediction Market (ACPM)**

We propose the Artificial Continuous Prediction Market (ACPM) as a means to predict a continuous real value, by integrating a range of data sources and aggregating the results of different machine learning (ML) algorithms. ACPM adapts the concept of the (physical) prediction market to address the prediction of real values instead of discrete events. Each ACPM participant has a data source, a ML algorithm and a local decision-making procedure that determines what to bid on what value. The contributions of ACPM are: (i) adaptation to changes in data quality by the use of learning in: (a) the market, which weights each market participant to adjust the influence of each on the market prediction and (b) the participants, which use a Q-learning based trading strategy to incorporate the market prediction into their subsequent predictions, (ii) resilience to a changing population of low- and high-performing participants. We demonstrate the effectiveness of ACPM by application to an influenza-like illnesses data set, showing ACPM out-performs a range of well-known regression models and is resilient to variation in data source quality. … **Metropolis Adjusted Langevin Algorithm (MALA)**

The Metropolis-Adjusted Langevin Algorithm (MALA) is a Markov Chain Monte Carlo method which creates a Markov chain reversible with respect to a given target distribution, ?N, with Lebesgue density on R^N; it can hence be used to approximately sample the target distribution. When the dimension N is large a key question is to determine the computational cost of the algorithm as a function of N. One approach to this question, which we adopt here, is to derive diffusion limits for the algorithm. The family of target measures that we consider in this paper are, in general, in non-product form and are of interest in applied problems as they arise in Bayesian nonparametric statistics and in the study of conditioned diffusions. Furthermore, we study the situation, which arises in practice, where the algorithm is started out of stationarity. We thereby significantly extend previous works which consider either only measures of product form, when the Markov chain is started out of stationarity, or measures defined via a density with respect to a Gaussian, when the Markov chain is started in stationarity. We prove that, in the non-stationary regime, the computational cost of the algorithm is of the order N^(1/2) with dimension, as opposed to what is known to happen in the stationary regime, where the cost is of the order N^(1/3). …

# If you did not already know

**16**
*Friday*
Feb 2018

Posted What is ...

in
Advertisements