**Multi-Robot Transfer Learning**

Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots’ dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map. … **Tensorial Mixture Models**

We introduce a generative model, we call Tensorial Mixture Models (TMMs) based on mixtures of basic component distributions over local structures (e.g. patches in an image) where the dependencies between the local-structures are represented by a ‘priors tensor’ holding the prior probabilities of assigning a component distribution to each local-structure. In their general form, TMMs are intractable as the prior tensor is typically of exponential size. However, when the priors tensor is decomposed it gives rise to an arithmetic circuit which in turn transforms the TMM into a Convolutional Arithmetic Circuit (ConvAC). A ConvAC corresponds to a shallow (single hidden layer) network when the priors tensor is decomposed by a CP (sum of rank-1) approach and corresponds to a deep network when the decomposition follows the Hierarchical Tucker (HT) model. The ConvAC representation of a TMM possesses several attractive properties. First, the inference is tractable and is implemented by a forward pass through a deep network. Second, the architectural design of the model follows the deep networks community design, i.e., the structure of TMMs is determined by just two easily understood factors: size of pooling windows and number of channels. Finally, we demonstrate the effectiveness of our model when tackling the problem of classification with missing data, leveraging TMMs unique ability of tractable marginalization which leads to optimal classifiers regardless of the missingness distribution. … **Graph-based Activity Regularization (GAR)**

In this paper, we propose a novel graph-based approach for semi-supervised learning problems, which considers an adaptive adjacency of the examples throughout the unsupervised portion of the training. Adjacency of the examples is inferred using the predictions of a neural network model which is first initialized by a supervised pretraining. These predictions are then updated according to a novel unsupervised objective which regularizes another adjacency, now linking the output nodes. Regularizing the adjacency of the output nodes, inferred from the predictions of the network, creates an easier optimization problem and ultimately provides that the predictions of the network turn into the optimal embedding. Ultimately, the proposed framework provides an effective and scalable graph-based solution which is natural to the operational mechanism of deep neural networks. Our results show state-of-the-art performance within semi-supervised learning with the highest accuracies reported to date in the literature for SVHN and NORB datasets. …

# If you did not already know

**19**
*Monday*
Feb 2018

Posted What is ...

in
Advertisements