Generalized Linear Mixed Model (GLMM) google
In statistics, a generalized linear mixed model (GLMM) is a particular type of mixed model. It is an extension to the generalized linear model in which the linear predictor contains random effects in addition to the usual fixed effects. These random effects are usually assumed to have a normal distribution. Fitting such models by maximum likelihood involves integrating over these random effects. In general, these integrals cannot be expressed in analytical form. Various approximate methods have been developed, but none has good properties for all possible models and data sets (ungrouped binary data being particularly problematic). For this reason, methods involving numerical quadrature or Markov chain Monte Carlo have increased in use as increasing computing power and advances in methods have made them more practical.

DeepSense google
Mobile sensing applications usually require time-series inputs from sensors. Some applications, such as tracking, can use sensed acceleration and rate of rotation to calculate displacement based on physical system models. Other applications, such as activity recognition, extract manually designed features from sensor inputs for classification. Such applications face two challenges. On one hand, on-device sensor measurements are noisy. For many mobile applications, it is hard to find a distribution that exactly describes the noise in practice. Unfortunately, calculating target quantities based on physical system and noise models is only as accurate as the noise assumptions. Similarly, in classification applications, although manually designed features have proven to be effective, it is not always straightforward to find the most robust features to accommodate diverse sensor noise patterns and user behaviors. To this end, we propose DeepSense, a deep learning framework that directly addresses the aforementioned noise and feature customization challenges in a unified manner. DeepSense integrates convolutional and recurrent neural networks to exploit local interactions among similar mobile sensors, merge local interactions of different sensory modalities into global interactions, and extract temporal relationships to model signal dynamics. DeepSense thus provides a general signal estimation and classification framework that accommodates a wide range of applications. We demonstrate the effectiveness of DeepSense using three representative and challenging tasks: car tracking with motion sensors, heterogeneous human activity recognition, and user identification with biometric motion analysis. DeepSense significantly outperforms the state-of-the-art methods for all three tasks. In addition, DeepSense is feasible to implement on smartphones due to its moderate energy consumption and low latency …

Deep Private-Feature Extractor (DPFE) google
We present and evaluate Deep Private-Feature Extractor (DPFE), a deep model which is trained and evaluated based on information theoretic constraints. Using the selective exchange of information between a user’s device and a service provider, DPFE enables the user to prevent certain sensitive information from being shared with a service provider, while allowing them to extract approved information using their model. We introduce and utilize the log-rank privacy, a novel measure to assess the effectiveness of DPFE in removing sensitive information and compare different models based on their accuracy-privacy tradeoff. We then implement and evaluate the performance of DPFE on smartphones to understand its complexity, resource demands, and efficiency tradeoffs. Our results on benchmark image datasets demonstrate that under moderate resource utilization, DPFE can achieve high accuracy for primary tasks while preserving the privacy of sensitive features. …