This book is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. At first, we propose a methodology based on four dimensions for our analysis: – objective – What musical content is to be generated? (e.g., melody, accompaniment…); – representation – What are the information formats used for the corpus and for the expected generated output? (e.g., MIDI, piano roll, text…); – architecture – What type of deep neural network is to be used? (e.g., recurrent network, autoencoder, generative adversarial networks…); – strategy – How to model and control the process of generation (e.g., direct feedforward, sampling, unit selection…). For each dimension, we conduct a comparative analysis of various models and techniques. For the strategy dimension, we propose some tentative typology of possible approaches and mechanisms. This classification is bottom-up, based on the analysis of many existing deep-learning based systems for music generation, which are described in this book. The last part of the book includes discussion and prospects. Deep Learning Techniques for Music Generation – A Survey

Advertisements