Stochastic Cubic Regularization google
This paper proposes a stochastic variant of a classic algorithm—the cubic-regularized Newton method [Nesterov and Polyak 2006]. The proposed algorithm efficiently escapes saddle points and finds approximate local minima for general smooth, nonconvex functions in only $\mathcal{\tilde{O}}(\epsilon^{-3.5})$ stochastic gradient and stochastic Hessian-vector product evaluations. The latter can be computed as efficiently as stochastic gradients. This improves upon the $\mathcal{\tilde{O}}(\epsilon^{-4})$ rate of stochastic gradient descent. Our rate matches the best-known result for finding local minima without requiring any delicate acceleration or variance-reduction techniques. …

k-mer google
The term k-mer typically refers to all the possible substrings, of length k, that are contained in a string. In Computational genomics, k-mers refer to all the possible subsequences (of length k) from a read obtained through DNA Sequencing. The amount of k-mers possible given a string of length, L, is L-k+1 whilst the number of possible k-mers given n possibilities (4 in the case of DNA e.g. ACTG) is n^{k}. K-mers are typically used during Sequence assembly, but can also be used in Sequence alignment.

DisentAngled Representation Learning Agent (DARLA) google
Domain adaptation is an important open problem in deep reinforcement learning (RL). In many scenarios of interest data is hard to obtain, so agents may learn a source policy in a setting where data is readily available, with the hope that it generalises well to the target domain. We propose a new multi-stage RL agent, DARLA (DisentAngled Representation Learning Agent), which learns to see before learning to act. DARLA’s vision is based on learning a disentangled representation of the observed environment. Once DARLA can see, it is able to acquire source policies that are robust to many domain shifts – even with no access to the target domain. DARLA significantly outperforms conventional baselines in zero-shot domain adaptation scenarios, an effect that holds across a variety of RL environments (Jaco arm, DeepMind Lab) and base RL algorithms (DQN, A3C and EC). …