Restricted Mean Survival Time (RMST) google
RMST = area under the survival curve up to t*
• Can think of it as the ‘t*-year life expectancy’
• A patient might be told that ‘your life expectancy with Z disease on X treatment over the next 18 months is 9 months’
• Or, ‘treatment A increases your life expectancy during the next 18 months by 2 months, compared with treatment B’
http://…tomer-churn-restricted-mean-survival-time


Synthesizing What I Mean (SWIM) google
Modern programming frameworks come with large libraries, with diverse applications such as for matching regular expressions, parsing XML files and sending email. Programmers often use search engines such as Google and Bing to learn about existing APIs. In this paper, we describe SWIM, a tool which suggests code snippets given API-related natural language queries such as ‘generate md5 hash code’. We translate user queries into the APIs of interest using clickthrough data from the Bing search engine. Then, based on patterns learned from open-source code repositories, we synthesize idiomatic code describing the use of these APIs. We introduce \emph{structured call sequences} to capture API-usage patterns. Structured call sequences are a generalized form of method call sequences, with if-branches and while-loops to represent conditional and repeated API usage patterns, and are simple to extract and amenable to synthesis. We evaluated SWIM with 30 common C# API-related queries received by Bing. For 70% of the queries, the first suggested snippet was a relevant solution, and a relevant solution was present in the top 10 results for all benchmarked queries. The online portion of the workflow is also very responsive, at an average of 1.5 seconds per snippet. …

ChainerCV google
Despite significant progress of deep learning in the field of computer vision, there has not been a software library that covers these methods in a unifying manner. We introduce ChainerCV, a software library that is intended to fill this gap. ChainerCV supports numerous neural network models as well as software components needed to conduct research in computer vision. These implementations emphasize simplicity, flexibility and good software engineering practices. The library is designed to perform on par with the results reported in published papers and its tools can be used as a baseline for future research in computer vision. Our implementation includes sophisticated models like Faster R-CNN and SSD, and covers tasks such as object detection and semantic segmentation. …

Advertisements