Clustering in Longitudinal Networks (ppsbm)
Stochastic block model used for dynamic graphs represented by Poisson processes. To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individuals’ latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Y. Baraud and L. Birgé (2009). <doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G. Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P. Latouche and F. Rossi (2016). <doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P. Dempster, N. M. Laird and D. B. Rubin (1977). <http://…/2984875>. G. Grégoire (1993). <http://…/4616289>. L. Hubert and P. Arabie (1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C. Matias, T. Rebafka and F. Villers (2018). <doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014). <doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983). <doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006). <doi:10.3150/bj/1155735930>.

Structure Parameter Inference Approach (SPINA)
Calculates constant structure parameters of endocrine homeostatic systems from equilibrium hormone concentrations. Methods and equations have been described in Dietrich et al. (2012) <doi:10.1155/2012/351864> and Dietrich et al. (2016) <doi:10.3389/fendo.2016.00057>.

Accessing the Wordbank Database (wordbankr)
Tools for connecting to Wordbank, an open repository for developmental vocabulary data.

Estimation of Interpretable eQTL Effect Sizes Using a Log of Linear Model (ACMEeqtl)
We use a non-linear model, termed ACME, that reflects a parsimonious biological model for allelic contributions of cis-acting eQTLs. With non-linear least-squares algorithm we estimate maximum likelihood parameters. The ACME model provides interpretable effect size estimates and p-values with well controlled Type-I error. Includes both R and (much faster) C implementations. For more details see Palowitch et al. (2017) <doi:10.1111/biom.12810>.

Inferring the Topology of Omics Data (iTOP)
Infers a topology of relationships between different datasets, such as multi-omics and phenotypic data recorded on the same samples. We based this methodology on the RV coefficient (Robert & Escoufier, 1976, <doi:10.2307/2347233>), a measure of matrix correlation, which we have extended for partial matrix correlations and binary data (Aben et al., 2018, in preparation).

Advertisements