Adversarial Hashing Network (HashGAN) google
As the rapid growth of multi-modal data, hashing methods for cross-modal retrieval have received considerable attention. Deep-networks-based cross-modal hashing methods are appealing as they can integrate feature learning and hash coding into end-to-end trainable frameworks. However, it is still challenging to find content similarities between different modalities of data due to the heterogeneity gap. To further address this problem, we propose an adversarial hashing network with attention mechanism to enhance the measurement of content similarities by selectively focusing on informative parts of multi-modal data. The proposed new adversarial network, HashGAN, consists of three building blocks: 1) the feature learning module to obtain feature representations, 2) the generative attention module to generate an attention mask, which is used to obtain the attended (foreground) and the unattended (background) feature representations, 3) the discriminative hash coding module to learn hash functions that preserve the similarities between different modalities. In our framework, the generative module and the discriminative module are trained in an adversarial way: the generator is learned to make the discriminator cannot preserve the similarities of multi-modal data w.r.t. the background feature representations, while the discriminator aims to preserve the similarities of multi-modal data w.r.t. both the foreground and the background feature representations. Extensive evaluations on several benchmark datasets demonstrate that the proposed HashGAN brings substantial improvements over other state-of-the-art cross-modal hashing methods. …

Generative Information Lower BOund (GILBO) google
We propose a simple, tractable lower bound on the mutual information contained in the joint generative density of any latent variable generative model: the GILBO (Generative Information Lower BOund). It offers a data independent measure of the complexity of the learned latent variable description, giving the log of the effective description length. It is well-defined for both VAEs and GANs. We compute the GILBO for 800 GANs and VAEs trained on MNIST and discuss the results. …

Geometric Enclosing Network (GEN) google
Training model to generate data has increasingly attracted research attention and become important in modern world applications. We propose in this paper a new geometry-based optimization approach to address this problem. Orthogonal to current state-of-the-art density-based approaches, most notably VAE and GAN, we present a fresh new idea that borrows the principle of minimal enclosing ball to train a generator G\left(\bz\right) in such a way that both training and generated data, after being mapped to the feature space, are enclosed in the same sphere. We develop theory to guarantee that the mapping is bijective so that its inverse from feature space to data space results in expressive nonlinear contours to describe the data manifold, hence ensuring data generated are also lying on the data manifold learned from training data. Our model enjoys a nice geometric interpretation, hence termed Geometric Enclosing Networks (GEN), and possesses some key advantages over its rivals, namely simple and easy-to-control optimization formulation, avoidance of mode collapsing and efficiently learn data manifold representation in a completely unsupervised manner. We conducted extensive experiments on synthesis and real-world datasets to illustrate the behaviors, strength and weakness of our proposed GEN, in particular its ability to handle multi-modal data and quality of generated data. …

Advertisements