Not only SQL (NoSQL) google
A NoSQL or Not Only SQL database provides a mechanism for storage and retrieval of data that is modeled in means other than the tabular relations used in relational databases. Motivations for this approach include simplicity of design, horizontal scaling and finer control over availability. The data structure (e.g. key-value, graph, or document) differs from the RDBMS, and therefore some operations are faster in NoSQL and some in RDBMS. There are differences though and the particular suitability of a given NoSQL DB depends on the problem to be solved (e.g. does the solution use graph algorithms?). The appearance of mature NoSQL databases has reduced the rationale for Java content repository (JCR) implementations.
NoSQL databases are finding significant and growing industry use in big data and real-time web applications. NoSQL systems are also referred to as “Not only SQL” to emphasize that they may in fact allow SQL-like query languages to be used. Many NoSQL stores compromise consistency (in the sense of the CAP theorem) in favor of availability and partition tolerance. Barriers to the greater adoption of NoSQL stores include the use of low-level query languages, the lack of standardized interfaces, and the huge investments already made in SQL by enterprises. Most NoSQL stores lack true ACID transactions, although a few recent systems, such as FairCom c-treeACE, Google Spanner and FoundationDB, have made them central to their designs.


Eclat Algorithm google
The Eclat algorithm is used to perform itemset mining. Itemset mining let us find frequent patterns in data like if a consumer buys milk, he also buys bread. This type of pattern is called association rules and is used in many application domains. The basic idea for the eclat algorithm is use tidset intersections to compute the support of a candidate itemset avoiding the generation of subsets that does not exist in the prefix tree. …

Data Cube Materialization google
Data cube materialization is a classical database operator introduced in Gray et al.~(Data Mining and Knowledge Discovery, Vol.~1), which is critical for many analysis tasks. Nandi et al.~(Transactions on Knowledge and Data Engineering, Vol.~6) first studied cube materialization for large scale datasets using the MapReduce framework, and proposed a sophisticated modification of a simple broadcast algorithm to handle a dataset with a 216GB cube size within 25 minutes with 2k machines in 2012. …

Advertisements