**Latent Dirichlet allocation Gibbs Newton (LDA-GN)**

Hyper-parameters play a major role in the learning and inference process of latent Dirichlet allocation (LDA). In order to begin the LDA latent variables learning process, these hyper-parameters values need to be pre-determined. We propose an extension for LDA that we call ‘Latent Dirichlet allocation Gibbs Newton’ (LDA-GN), which places non-informative priors over these hyper-parameters and uses Gibbs sampling to learn appropriate values for them. At the heart of LDA-GN is our proposed ‘Gibbs-Newton’ algorithm, which is a new technique for learning the parameters of multivariate Polya distributions. We report Gibbs-Newton performance results compared with two prominent existing approaches to the latter task: Minka’s fixed-point iteration method and the Moments method. We then evaluate LDA-GN in two ways: (i) by comparing it with standard LDA in terms of the ability of the resulting topic models to generalize to unseen documents; (ii) by comparing it with standard LDA in its performance on a binary classification task. … **Bellman Equation**

A Bellman equation, named after its discoverer, Richard Bellman, also known as a dynamic programming equation, is a necessary condition for optimality associated with the mathematical optimization method known as dynamic programming. It writes the value of a decision problem at a certain point in time in terms of the payoff from some initial choices and the value of the remaining decision problem that results from those initial choices. This breaks a dynamic optimization problem into simpler subproblems, as Bellman’s Principle of Optimality prescribes.

The Bellman equation was first applied to engineering control theory and to other topics in applied mathematics, and subsequently became an important tool in economic theory.

Almost any problem which can be solved using optimal control theory can also be solved by analyzing the appropriate Bellman equation. However, the term ‘Bellman equation’ usually refers to the dynamic programming equation associated with discrete-time optimization problems. In continuous-time optimization problems, the analogous equation is a partial differential equation which is usually called the Hamilton-Jacobi-Bellman equation. … **Rolling Forecast**

With a rolling forecast the number of periods in the forecast remain constant so that if for example the periods of your forecast are monthly for 12 months then as each month is traded it drops out of the forecast and another month is added onto the end of the forecast so you are always forecasting 12 monthly periods out into the future. …

# If you did not already know

**18**
*Wednesday*
Apr 2018

Posted What is ...

in
Advertisements