Stacked Deconvolutional Network (SDN) google
Recent progress in semantic segmentation has been driven by improving the spatial resolution under Fully Convolutional Networks (FCNs). To address this problem, we propose a Stacked Deconvolutional Network (SDN) for semantic segmentation. In SDN, multiple shallow deconvolutional networks, which are called as SDN units, are stacked one by one to integrate contextual information and guarantee the fine recovery of localization information. Meanwhile, inter-unit and intra-unit connections are designed to assist network training and enhance feature fusion since the connections improve the flow of information and gradient propagation throughout the network. Besides, hierarchical supervision is applied during the upsampling process of each SDN unit, which guarantees the discrimination of feature representations and benefits the network optimization. We carry out comprehensive experiments and achieve the new state-of-the-art results on three datasets, including PASCAL VOC 2012, CamVid, GATECH. In particular, our best model without CRF post-processing achieves an intersection-over-union score of 86.6% in the test set. …

Data Version Control (DVC) google
DVC makes your data science projects reproducible by automatically building data dependency graph (DAG). Your code and the dependencies could be easily shared by Git, and data – through cloud storage (AWS S3, GCP) in a single DVC environment. …

Damerau-Levenshtein Distance google
In information theory and computer science, the Damerau-Levenshtein distance (named after Frederick J. Damerau and Vladimir I. Levenshtein) is a string metric for measuring the edit distance between two sequences. Informally, the Damerau-Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other. The Damerau-Levenshtein distance differs from the classical Levenshtein distance by including transpositions among its allowable operations in addition to the three classical single-character edit operations (insertions, deletions and substitutions). In his seminal paper, Damerau stated that these four operations correspond to more than 80% of all human misspellings. Damerau’s paper considered only misspellings that could be corrected with at most one edit operation. While the original motivation was to measure distance between human misspellings to improve applications such as spell checkers, Damerau-Levenshtein distance has also seen uses in biology to measure the variation between protein sequences. …

Advertisements