Contextual Explanation Networks (CEN) google
We introduce contextual explanation networks (CENs)—a class of models that learn to predict by generating and leveraging intermediate explanations. CENs combine deep networks with context-specific probabilistic models and construct explanations in the form of locally-correct hypotheses. Contrary to the existing post-hoc model-explanation tools, CENs learn to predict and to explain jointly. Our approach offers two major advantages: (i) for each prediction, valid instance-specific explanations are generated with no computational overhead and (ii) prediction via explanation acts as a regularization and boosts performance in low-resource settings. We prove that local approximations to the decision boundary of our networks are consistent with the generated explanations. Our results on image and text classification and survival analysis tasks demonstrate that CENs can easily match or outperform the state-of-the-art while offering additional insights behind each prediction, valuable for decision support. …

Poisson Factorization Machine (PFM) google
Newsroom in online ecosystem is difficult to untangle. With prevalence of social media, interactions between journalists and individuals become visible, but lack of understanding to inner processing of information feedback loop in public sphere leave most journalists baffled. Can we provide an organized view to characterize journalist behaviors on individual level to know better of the ecosystem? To this end, I propose Poisson Factorization Machine (PFM), a Bayesian analogue to matrix factorization that assumes Poisson distribution for generative process. The model generalizes recent studies on Poisson Matrix Factorization to account temporal interaction which involves tensor-like structure, and label information. Two inference procedures are designed, one based on batch variational EM and another stochastic variational inference scheme that efficiently scales with data size. An important novelty in this note is that I show how to stack layers of PFM to introduce a deep architecture. This work discusses some potential results applying the model and explains how such latent factors may be useful for analyzing latent behaviors for data exploration. …

ListOps google
Latent tree learning models learn to parse a sentence without syntactic supervision, and use that parse to build the sentence representation. Existing work on such models has shown that, while they perform well on tasks like sentence classification, they do not learn grammars that conform to any plausible semantic or syntactic formalism (Williams et al., 2018a). Studying the parsing ability of such models in natural language can be challenging due to the inherent complexities of natural language, like having several valid parses for a single sentence. In this paper we introduce ListOps, a toy dataset created to study the parsing ability of latent tree models. ListOps sequences are in the style of prefix arithmetic. The dataset is designed to have a single correct parsing strategy that a system needs to learn to succeed at the task. We show that the current leading latent tree models are unable to learn to parse and succeed at ListOps. These models achieve accuracies worse than purely sequential RNNs. …

Advertisements