Semi-Supervised Multimodal Hashing google
Retrieving nearest neighbors across correlated data in multiple modalities, such as image-text pairs on Facebook and video-tag pairs on YouTube, has become a challenging task due to the huge amount of data. Multimodal hashing methods that embed data into binary codes can boost the retrieving speed and reduce storage requirement. As unsupervised multimodal hashing methods are usually inferior to supervised ones, while the supervised ones requires too much manually labeled data, the proposed method in this paper utilizes a part of labels to design a semi-supervised multimodal hashing method. It first computes the transformation matrices for data matrices and label matrix. Then, with these transformation matrices, fuzzy logic is introduced to estimate a label matrix for unlabeled data. Finally, it uses the estimated label matrix to learn hashing functions for data in each modality to generate a unified binary code matrix. Experiments show that the proposed semi-supervised method with 50% labels can get a medium performance among the compared supervised ones and achieve an approximate performance to the best supervised method with 90% labels. With only 10% labels, the proposed method can still compete with the worst compared supervised one. …

Community Trees google
We introduce the concept of community trees that summarizes topological structures within a network. A community tree is a tree structure representing clique communities from the clique percolation method (CPM). The community tree also generates a persistent diagram. Community trees and persistent diagrams reveal topological structures of the underlying networks and can be used as visualization tools. We study the stability of community trees and derive a quantity called the total star number (TSN) that presents an upper bound on the change of community trees. Our findings provide a topological interpretation for the stability of communities generated by the CPM. …

Neural Vector Space Model (NVSM) google
We propose the Neural Vector Space Model (NVSM), a method that learns representations of documents in an unsupervised manner for news article retrieval. In the NVSM paradigm, we learn low-dimensional representations of words and documents from scratch using gradient descent and rank documents according to their similarity with query representations that are composed from word representations. We show that NVSM performs better at document ranking than existing latent semantic vector space methods. The addition of NVSM to a mixture of lexical language models and a state-of-the-art baseline vector space model yields a statistically significant increase in retrieval effectiveness. Consequently, NVSM adds a complementary relevance signal. Next to semantic matching, we find that NVSM performs well in cases where lexical matching is needed. NVSM learns a notion of term specificity directly from the document collection without feature engineering. We also show that NVSM learns regularities related to Luhn significance. Finally, we give advice on how to deploy NVSM in situations where model selection (e.g., cross-validation) is infeasible. We find that an unsupervised ensemble of multiple models trained with different hyperparameter values performs better than a single cross-validated model. Therefore, NVSM can safely be used for ranking documents without supervised relevance judgments. …

Advertisements