Perception google
Perception (from the Latin perceptio, percipio) is the organization, identification, and interpretation of sensory information in order to represent and understand the environment. …

Support Tensor Train Machine (STTM) google
There has been growing interest in extending traditional vector-based machine learning techniques to their tensor forms. An example is the support tensor machine (STM) that utilizes a rank-one tensor to capture the data structure, thereby alleviating the overfitting and curse of dimensionality problems in the conventional support vector machine (SVM). However, the expressive power of a rank-one tensor is restrictive for many real-world data. To overcome this limitation, we introduce a support tensor train machine (STTM) by replacing the rank-one tensor in an STM with a tensor train. Experiments validate and confirm the superiority of an STTM over the SVM and STM. …

ESN Recurrent Autoencoder (ESN-RAE) google
It is a widely accepted fact that data representations intervene noticeably in machine learning tools. The more they are well defined the better the performance results are. Feature extraction-based methods such as autoencoders are conceived for finding more accurate data representations from the original ones. They efficiently perform on a specific task in terms of 1) high accuracy, 2) large short term memory and 3) low execution time. Echo State Network (ESN) is a recent specific kind of Recurrent Neural Network which presents very rich dynamics thanks to its reservoir-based hidden layer. It is widely used in dealing with complex non-linear problems and it has outperformed classical approaches in a number of tasks including regression, classification, etc. In this paper, the noticeable dynamism and the large memory provided by ESN and the strength of Autoencoders in feature extraction are gathered within an ESN Recurrent Autoencoder (ESN-RAE). In order to bring up sturdier alternative to conventional reservoir-based networks, not only single layer basic ESN is used as an autoencoder, but also Multi-Layer ESN (ML-ESN-RAE). The new features, once extracted from ESN’s hidden layer, are applied to classification tasks. The classification rates rise considerably compared to those obtained when applying the original data features. An accuracy-based comparison is performed between the proposed recurrent AEs and two variants of an ELM feed-forward AEs (Basic and ML) in both of noise free and noisy environments. The empirical study reveals the main contribution of recurrent connections in improving the classification performance results. …

Advertisements