Bindings for ‘Tabula’ PDF Table Extractor Library (tabulizer)
Bindings for the ‘Tabula’ <http://…/> ‘Java’ library, which can extract tables from PDF documents. The ‘tabulizerjars’ package <https://…/tabulizerjars> provides versioned ‘Java’ .jar files, including all dependencies, aligned to releases of ‘Tabula’.

Pre-Process, Visualize and Analyse Process Analytical Data, by Spectral Data Measurements Made During a Chemical Process (spectralAnalysis)
Infrared, near-infrared and Raman spectroscopic data measured during chemical reactions, provide structural fingerprints by which molecules can be identified and quantified. The application of these spectroscopic techniques as inline process analytical tools (PAT), provides the (pharma-)chemical industry with novel tools, allowing to monitor their chemical processes, resulting in a better process understanding through insight in reaction rates, mechanistics, stability, etc. Data can be read into R via the generic spc-format, which is generally supported by spectrometer vendor software. Versatile pre-processing functions are available to perform baseline correction by linking to the ‘baseline’ package; noise reduction via the ‘signal’ package; as well as time alignment, normalization, differentiation, integration and interpolation. Implementation based on the S4 object system allows storing a pre-processing pipeline as part of a spectral data object, and easily transferring it to other datasets. Interactive plotting tools are provided based on the ‘plotly’ package. Non-negative matrix factorization (NMF) has been implemented to perform multivariate analyses on individual spectral datasets or on multiple datasets at once. NMF provides a parts-based representation of the spectral data in terms of spectral signatures of the chemical compounds and their relative proportions. The functionality to read in spc-files was adapted from the ‘hyperSpec’ package.

Multivariate Cluster Elastic Net (mcen)
Fits the Multivariate Cluster Elastic Net (MCEN) presented in Price & Sherwood (2018) <arXiv:1707.03530>. The MCEN model simultaneously estimates regression coefficients and a clustering of the responses for a multivariate response model. Currently accommodates the Gaussian and binomial likelihood.