CYCLOSA google
By regularly querying Web search engines, users (unconsciously) disclose large amounts of their personal data as part of their search queries, among which some might reveal sensitive information (e.g. health issues, sexual, political or religious preferences). Several solutions exist to allow users querying search engines while improving privacy protection. However, these solutions suffer from a number of limitations: some are subject to user re-identification attacks, while others lack scalability or are unable to provide accurate results. This paper presents CYCLOSA, a secure, scalable and accurate private Web search solution. CYCLOSA improves security by relying on trusted execution environments (TEEs) as provided by Intel SGX. Further, CYCLOSA proposes a novel adaptive privacy protection solution that reduces the risk of user re- identification. CYCLOSA sends fake queries to the search engine and dynamically adapts their count according to the sensitivity of the user query. In addition, CYCLOSA meets scalability as it is fully decentralized, spreading the load for distributing fake queries among other nodes. Finally, CYCLOSA achieves accuracy of Web search as it handles the real query and the fake queries separately, in contrast to other existing solutions that mix fake and real query results. …

Stochastic Decorrelation Loss (SDL) google
Multi-view learning aims to learn an embedding space where multiple views are either maximally correlated for cross-view recognition, or decorrelated for latent factor disentanglement. A key challenge for deep multi-view representation learning is scalability. To correlate or decorrelate multi-view signals, the covariance of the whole training set should be computed which does not fit well with the mini-batch based training strategy, and moreover (de)correlation should be done in a way that is free of SVD-based computation in order to scale to contemporary layer sizes. In this work, a unified approach is proposed for efficient and scalable deep multi-view learning. Specifically, a mini-batch based Stochastic Decorrelation Loss (SDL) is proposed which can be applied to any network layer to provide soft decorrelation of the layer’s activations. This reveals the connection between deep multi-view learning models such as Deep Canonical Correlation Analysis (DCCA) and Factorisation Autoencoder (FAE), and allows them to be easily implemented. We further show that SDL is superior to other decorrelation losses in terms of efficacy and scalability. …

Markov Chain Las Vegas (MCLV) google
We propose a Las Vegas transformation of Markov Chain Monte Carlo (MCMC) estimators of Restricted Boltzmann Machines (RBMs). We denote our approach Markov Chain Las Vegas (MCLV). MCLV gives statistical guarantees in exchange for random running times. MCLV uses a stopping set built from the training data and has maximum number of Markov chain steps K (referred as MCLV-K). We present a MCLV-K gradient estimator (LVS-K) for RBMs and explore the correspondence and differences between LVS-K and Contrastive Divergence (CD-K), with LVS-K significantly outperforming CD-K training RBMs over the MNIST dataset, indicating MCLV to be a promising direction in learning generative models. …

Advertisements