Dynamic Author-Persona Topic Model (DAP) google
Topic modeling enables exploration and compact representation of a corpus. The CaringBridge (CB) dataset is a massive collection of journals written by patients and caregivers during a health crisis. Topic modeling on the CB dataset, however, is challenging due to the asynchronous nature of multiple authors writing about their health journeys. To overcome this challenge we introduce the Dynamic Author-Persona topic model (DAP), a probabilistic graphical model designed for temporal corpora with multiple authors. The novelty of the DAP model lies in its representation of authors by a persona — where personas capture the propensity to write about certain topics over time. Further, we present a regularized variational inference algorithm, which we use to encourage the DAP model’s personas to be distinct. Our results show significant improvements over competing topic models — particularly after regularization, and highlight the DAP model’s unique ability to capture common journeys shared by different authors. …

K-Nearest Oracles Borderline (KNORA-B) google
Dynamic Ensemble Selection (DES) techniques aim to select locally competent classifiers for the classification of each new test sample. Most DES techniques estimate the competence of classifiers using a given criterion over the region of competence of the test sample (its the nearest neighbors in the validation set). The K-Nearest Oracles Eliminate (KNORA-E) DES selects all classifiers that correctly classify all samples in the region of competence of the test sample, if such classifier exists, otherwise, it removes from the region of competence the sample that is furthest from the test sample, and the process repeats. When the region of competence has samples of different classes, KNORA-E can reduce the region of competence in such a way that only samples of a single class remain in the region of competence, leading to the selection of locally incompetent classifiers that classify all samples in the region of competence as being from the same class. In this paper, we propose two DES techniques: K-Nearest Oracles Borderline (KNORA-B) and K-Nearest Oracles Borderline Imbalanced (KNORA-BI). KNORA-B is a DES technique based on KNORA-E that reduces the region of competence but maintains at least one sample from each class that is in the original region of competence. KNORA-BI is a variation of KNORA-B for imbalance datasets that reduces the region of competence but maintains at least one minority class sample if there is any in the original region of competence. Experiments are conducted comparing the proposed techniques with 19 DES techniques from the literature using 40 datasets. The results show that the proposed techniques achieved interesting results, with KNORA-BI outperforming state-of-art techniques. …

Context-Aware Personalized POI Sequence Recommender System (CAPS) google
The revolution of World Wide Web (WWW) and smart-phone technologies have been the key-factor behind remarkable success of social networks. With the ease of availability of check-in data, the location-based social networks (LBSN) (e.g., Facebook1, etc.) have been heavily explored in the past decade for Point-of-Interest (POI) recommendation. Though many POI recommenders have been defined, most of them have focused on recommending a single location or an arbitrary list that is not contextually coherent. It has been cumbersome to rely on such systems when one needs a contextually coherent list of locations, that can be used for various day-to-day activities, for e.g., itinerary planning. This paper proposes a model termed as CAPS (Context-Aware Personalized POI Sequence Recommender System) that generates contextually coherent POI sequences relevant to user preferences. To the best of our knowledge, CAPS is the first attempt to formulate the contextual POI sequence modeling by extending Recurrent Neural Network (RNN) and its variants. CAPS extends RNN by incorporating multiple contexts to the hidden layer and by incorporating global context (sequence features) to the hidden layers and the output layer. It extends the variants of RNN (e.g., Long-short term memory (LSTM)) by incorporating multiple contexts and global features in the gate update relations. The major contributions of this paper are: (i) it models the contextual POI sequence problem by incorporating personalized user preferences through multiple constraints (e.g., categorical, social, temporal, etc.), (ii) it extends RNN to incorporate the contexts of individual item and that of the whole sequence. It also extends the gated functionality of variants of RNN to incorporate the multiple contexts, and (iii) it evaluates the proposed models against two real-world data sets. …

Advertisements