Local Binary Convolution (LBC) google
We propose local binary convolution (LBC), an efficient alternative to convolutional layers in standard convolutional neural networks (CNN). The design principles of LBC are motivated by local binary patterns (LBP). The LBC layer comprises of a set of fixed sparse pre-defined binary convolutional filters that are not updated during the training process, a non-linear activation function and a set of learnable linear weights. The linear weights combine the activated filter responses to approximate the corresponding activated filter responses of a standard convolutional layer. The LBC layer affords significant parameter savings, 9x to 169x in the number of learnable parameters compared to a standard convolutional layer. Furthermore, due to lower model complexity and sparse and binary nature of the weights also results in up to 9x to 169x savings in model size compared to a standard convolutional layer. We demonstrate both theoretically and experimentally that our local binary convolution layer is a good approximation of a standard convolutional layer. Empirically, CNNs with LBC layers, called local binary convolutional neural networks (LBCNN), reach state-of-the-art performance on a range of visual datasets (MNIST, SVHN, CIFAR-10, and a subset of ImageNet) while enjoying significant computational savings. …

Corpora Agnostic Word Vectorization Method (WordNet2Vec) google
A complex nature of big data resources demands new methods for structuring especially for textual content. WordNet is a good knowledge source for comprehensive abstraction of natural language as its good implementations exist for many languages. Since WordNet embeds natural language in the form of a complex network, a transformation mechanism WordNet2Vec is proposed in the paper. It creates vectors for each word from WordNet. These vectors encapsulate general position – role of a given word towards all other words in the natural language. Any list or set of such vectors contains knowledge about the context of its component within the whole language. Such word representation can be easily applied to many analytic tasks like classification or clustering. …

Active Semi-supervised Transfer Learning (ASTL) google
Single-trial classification of event-related potentials in electroencephalogram (EEG) signals is a very important paradigm of brain-computer interface (BCI). Because of individual differences, usually some subject-specific calibration data are required to tailor the classifier for each subject. Transfer learning has been extensively used to reduce such calibration data requirement, by making use of auxiliary data from similar/relevant subjects/tasks. However, all previous research assumes that all auxiliary data have been labeled. This paper considers a more general scenario, in which part of the auxiliary data could be unlabeled. We propose active semi-supervised transfer learning (ASTL) for offline BCI calibration, which integrates active learning, semi-supervised learning, and transfer learning. Using a visual evoked potential oddball task and three different EEG headsets, we demonstrate that ASTL can achieve consistently good performance across subjects and headsets, and it outperforms some state-of-the-art approaches in the literature. …

Advertisements