**Switching Neural Network (SNN)**

A new connectionist model, called Switching Neural Network (SNN), for the solution of classification problems is presented. SNN includes a first layer containing a particular kind of A/D converters, called latticizers, that suitably transform input vectors into binary strings. Then, the subsequent two layers of an SNN realize a positive Boolean function that solve in a lattice domain the original classification problem. Every function realized by an SNN can be written in terms of intelligible rules. Training can be performed by adopting a proper method for positive Boolean function reconstruction, called Shadow Clustering (SC). Simulation results obtained on the StatLog benchmark show the good quality of the SNNs trained with SC. … **Error Correction Model (ECM)**

An error correction model belongs to a category of multiple time series models most commonly used for data where the underlying variables have a long-run stochastic trend, also known as cointegration. ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-periods deviation from a long-run equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent variable returns to equilibrium after a change in other variables. … **ShuffleNet**

We introduce an extremely computation efficient CNN architecture named ShuffleNet, designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two proposed operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 6.7\%) than the recent MobileNet system on ImageNet classification under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves \textasciitilde 13$\times$ actual speedup over AlexNet while maintaining comparable accuracy. …

# If you did not already know

**12**
*Thursday*
Jul 2018

Posted What is ...

in
Advertisements