TensorFlow Hub google
TensorFlow Hub is a library to foster the publication, discovery, and consumption of reusable parts of machine learning models. A module is a self-contained piece of a TensorFlow graph, along with its weights and assets, that can be reused across different tasks in a process known as transfer learning. Modules contain variables that have been pre-trained for a task using a large dataset. By reusing a module on a related task, you can:
• train a model with a smaller dataset,
• improve generalization, or
• significantly speed up training. …

Fairness is a critical trait in decision making. As machine-learning models are increasingly being used in sensitive application domains (e.g. education and employment) for decision making, it is crucial that the decisions computed by such models are free of unintended bias. But how can we automatically validate the fairness of arbitrary machine-learning models For a given machine-learning model and a set of sensitive input parameters, our AEQUITAS approach automatically discovers discriminatory inputs that highlight fairness violation. At the core of AEQUITAS are three novel strategies to employ probabilistic search over the input space with the objective of uncovering fairness violation. Our AEQUITAS approach leverages inherent robustness property in common machine-learning models to design and implement scalable test generation methodologies. An appealing feature of our generated test inputs is that they can be systematically added to the training set of the underlying model and improve its fairness. To this end, we design a fully automated module that guarantees to improve the fairness of the underlying model. We implemented AEQUITAS and we have evaluated it on six state-of-the-art classifiers, including a classifier that was designed with fairness constraints. We show that AEQUITAS effectively generates inputs to uncover fairness violation in all the subject classifiers and systematically improves the fairness of the respective models using the generated test inputs. In our evaluation, AEQUITAS generates up to 70% discriminatory inputs (w.r.t. the total number of inputs generated) and leverages these inputs to improve the fairness up to 94%. …

QA4IE google
Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements. …