Geometric Generalization Based Zero-Shot Learning Test google
Raven’s Progressive Matrices are one of the widely used tests in evaluating the human test taker’s fluid intelligence. Analogously, this paper introduces geometric generalization based zero-shot learning tests to measure the rapid learning ability and the internal consistency of deep generative models. Our empirical research analysis on state-of-the-art generative models discern their ability to generalize concepts across classes. In the process, we introduce Infinit World, an evaluable, scalable, multi-modal, light-weight dataset and Zero-Shot Intelligence Metric ZSI. The proposed tests condenses human-level spatial and numerical reasoning tasks to its simplistic geometric forms. The dataset is scalable to a theoretical limit of infinity, in numerical features of the generated geometric figures, image size and in quantity. We systematically analyze state-of-the-art model’s internal consistency, identify their bottlenecks and propose a pro-active optimization method for few-shot and zero-shot learning. …

SNIPER google
We present SNIPER, an algorithm for performing efficient multi-scale training in instance level visual recognition tasks. Instead of processing every pixel in an image pyramid, SNIPER processes context regions around ground-truth instances (referred to as chips) at the appropriate scale. For background sampling, these context-regions are generated using proposals extracted from a region proposal network trained with a short learning schedule. Hence, the number of chips generated per image during training adaptively changes based on the scene complexity. SNIPER only processes 30% more pixels compared to the commonly used single scale training at 800×1333 pixels on the COCO dataset. But, it also observes samples from extreme resolutions of the image pyramid, like 1400×2000 pixels. As SNIPER operates on resampled low resolution chips (512×512 pixels), it can have a batch size as large as 20 on a single GPU even with a ResNet-101 backbone. Therefore it can benefit from batch-normalization during training without the need for synchronizing batch-normalization statistics across GPUs. SNIPER brings training of instance level recognition tasks like object detection closer to the protocol for image classification and suggests that the commonly accepted guideline that it is important to train on high resolution images for instance level visual recognition tasks might not be correct. Our implementation based on Faster-RCNN with a ResNet-101 backbone obtains an mAP of 47.6% on the COCO dataset for bounding box detection and can process 5 images per second with a single GPU. …

Machine Learning Canvas google
A framework to connect the dots between data collection, machine learning, and value creation …

Advertisements