Dual Supervised Learning google
Many supervised learning tasks are emerged in dual forms, e.g., English-to-French translation vs. French-to-English translation, speech recognition vs. text to speech, and image classification vs. image generation. Two dual tasks have intrinsic connections with each other due to the probabilistic correlation between their models. This connection is, however, not effectively utilized today, since people usually train the models of two dual tasks separately and independently. In this work, we propose training the models of two dual tasks simultaneously, and explicitly exploiting the probabilistic correlation between them to regularize the training process. For ease of reference, we call the proposed approach \emph{dual supervised learning}. We demonstrate that dual supervised learning can improve the practical performances of both tasks, for various applications including machine translation, image processing, and sentiment analysis. …

Root Mean Squared Logarithmic Error (RMSLE) google
The evaluation metric that Kaggle uses to rank competing algorithms is the Root Mean Squared Logarithmic Error (RMSLE). …

Latent Variable Discovery Algorithm (LatentSearch) google
We consider the problem of discovering the simplest latent variable that can make two observed discrete variables conditionally independent. This problem has appeared in the literature as probabilistic latent semantic analysis (pLSA), and has connections to non-negative matrix factorization. When the simplicity of the variable is measured through its cardinality, we show that a solution to this latent variable discovery problem can be used to distinguish direct causal relations from spurious correlations among almost all joint distributions on simple causal graphs with two observed variables. Conjecturing a similar identifiability result holds with Shannon entropy, we study a loss function that trades-off between entropy of the latent variable and the conditional mutual information of the observed variables. We then propose a latent variable discovery algorithm — LatentSearch — and show that its stationary points are the stationary points of our loss function. We experimentally show that LatentSearch can indeed be used to distinguish direct causal relations from spurious correlations. …

Advertisements