KG-AUTOENCODER google
In the last years, deep learning has shown to be a game-changing technology in artificial intelligence thanks to the numerous successes it reached in diverse application fields. Among others, the use of deep learning for the recommendation problem, although new, looks quite promising due to its positive performances in terms of accuracy of recommendation results. In a recommendation setting, in order to predict user ratings on unknown items a possible configuration of a deep neural network is that of autoencoders tipically used to produce a lower dimensionality representation of the original data. In this paper we present KG-AUTOENCODER, an autoencoder that bases the structure of its neural network on the semanticsaware topology of a knowledge graph thus providing a label for neurons in the hidden layer that are eventually used to build a user profile and then compute recommendations. We show the effectiveness of KG-AUTOENCODER in terms of accuracy, diversity and novelty by comparing with state of the art recommendation algorithms. …

SneakPeek google
Nowadays, eye tracking is the most used technology to detect areas of interest. This kind of technology requires specialized equipment recording user’s eyes. In this paper, we propose SneakPeek, a different approach to detect areas of interest on images displayed in web pages based on the zooming and panning actions of the users through the image. We have validated our proposed solution with a group of test subjects that have performed a test in our on-line prototype. Being this the first iteration of the algorithm, we have found both good and bad results, depending on the type of image. In specific, SneakPeek works best with medium/big objects in medium/big sized images. The reason behind it is the limitation on detection when smartphone screens keep getting bigger and bigger. SneakPeek can be adapted to any website by simply adapting the controller interface for the specific case. …

Permutation Invariant Multi-Modal Segmentation (PIMMS) google
In a research context, image acquisition will often involve a pre-defined static protocol and the data will be of high quality. If we are to build applications that work in hospitals without significant operational changes in care delivery, algorithms should be designed to cope with the available data in the best possible way. In a clinical environment, imaging protocols are highly flexible, with MRI sequences commonly missing appropriate sequence labeling (e.g. T1, T2, FLAIR). To this end we introduce PIMMS, a Permutation Invariant Multi-Modal Segmentation technique that is able to perform inference over sets of MRI scans without using modality labels. We present results which show that our convolutional neural network can, in some settings, outperform a baseline model which utilizes modality labels, and achieve comparable performance otherwise. …

Advertisements