Diagram Generating Function (DGF) google
The recently-introduced self-learning Monte Carlo method is a general-purpose numerical method that speeds up Monte Carlo simulations by training an effective model to propose uncorrelated configurations in the Markov chain. We implement this method in the framework of continuous time Monte Carlo method with auxiliary field in quantum impurity models. We introduce and train a diagram generating function (DGF) to model the probability distribution of auxiliary field configurations in continuous imaginary time, at all orders of diagrammatic expansion. By using DGF to propose global moves in configuration space, we show that the self-learning continuous-time Monte Carlo method can significantly reduce the computational complexity of the simulation. …

Boundary-Sensitive Network (BSN) google
Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content. This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving proposals to cover truth action instances with high recall and high overlap using relatively fewer proposals. To address these difficulties, we introduce an effective proposal generation method, named Boundary-Sensitive Network (BSN), which adopts ‘local to global’ fashion. Locally, BSN first locates temporal boundaries with high probabilities, then directly combines these boundaries as proposals. Globally, with Boundary-Sensitive Proposal feature, BSN retrieves proposals by evaluating the confidence of whether a proposal contains an action within its region. We conduct experiments on two challenging datasets: ActivityNet-1.3 and THUMOS14, where BSN outperforms other state-of-the-art temporal action proposal generation methods with high recall and high temporal precision. Finally, further experiments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art temporal action detection performance. …

Purpose Built Analytic Modules (PBAM) google
Highly tuned special purpose modules such as those for fraud detection. These are practically plug-and-play in the industries and applications for which they´re targeted. And they allow Citizen Data Scientists (aka business analysts and some LOB managers) to operate advanced ML without the need to extensively configure the underlying DS techniques. …

Advertisements